Fundamentals of Accelerated Computing with CUDA Python (FACCP)

 

Course Overview

This course explores how to use Numba—the just-in-time, type-specializing Python function compiler—to accelerate Python programs to run on massively parallel NVIDIA GPUs. You’ll learn how to: · Use Numba to compile CUDA kernels from NumPy universal functions (ufuncs). Use Numba to create and launch custom CUDA kernels · Apply key GPU memory management techniques Upon completion, you’ll be able to use Numba to compile and launch CUDA kernels to accelerate your Python applications on NVIDIA GPUs.

Pré- requisitos

  • Basic Python competency, including familiarity with variable types, loops, conditional statements, functions, and array manipulations
  • NumPy competency, including the use of ndarrays and ufuncs
  • No previous knowledge of CUDA programming is required

Objetivos do Curso

At the conclusion of the workshop, you’ll have an understanding of the fundamental tools and techniques for GPU-accelerated Python applications with CUDA and Numba:

  • GPU-accelerate NumPy ufuncs with a few lines of code.
  • Configure code parallelization using the CUDA thread hierarchy.
  • Write custom CUDA device kernels for maximum performance and flexibility.
  • Use memory coalescing and on-device shared memory to increase CUDA kernel bandwidth.

Preços & Delivery methods

Treinamento online

Duração
1 dia

Preço
  • Solicitar orçamento
Classroom training

Duração
1 dia

Preço
  • Solicitar orçamento

Click on town name or "Online Training" to book Agenda

Instructor-led Online Training:   Este é um curso Instructor-Led Online

Estados Unidos

Treinamento online 09:00 Eastern Standard Time (EST) Inscrever
Treinamento online 09:00 Central Daylight Time (CDT) Inscrever
Treinamento online 09:00 Eastern Daylight Time (EDT) Inscrever

Canadá

Treinamento online 09:00 Eastern Standard Time (EST) Inscrever
Treinamento online 09:00 Central Daylight Time (CDT) Inscrever
Treinamento online 09:00 Eastern Daylight Time (EDT) Inscrever