Designing and Implementing a Data Science Solution on Azure (DP-100T01)

 

Course Overview

Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring with Azure Machine Learning and MLflow.

Who should attend

This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud.

Prerequisites

Successful Azure Data Scientists start this role with a fundamental knowledge of cloud computing concepts, and experience in general data science and machine learning tools and techniques.

Specifically:

  • Creating cloud resources in Microsoft Azure.
  • Using Python to explore and visualize data.
  • Training and validating machine learning models using common frameworks like Scikit-Learn, PyTorch, and TensorFlow.
  • Working with containersTo gain these prerequisite skills, take the following free online training before attending the course:
  • Explore Microsoft cloud concepts.
  • Create machine learning models.
  • Administer containers in AzureIf you are completely new to data science and machine learning, please complete Microsoft Azure AI Fundamentals first.

Course Content

  • Design a data ingestion strategy for machine learning projects´
  • Design a machine learning model training solution
  • Design a model deployment solution
  • Explore Azure Machine Learning workspace resources and assets
  • Explore developer tools for workspace interaction
  • Make data available in Azure Machine Learning
  • Work with compute targets in Azure Machine Learning
  • Work with environments in Azure Machine Learning
  • Find the best classification model with Automated Machine Learning
  • Track model training in Jupyter notebooks with MLflow
  • Run a training script as a command job in Azure Machine Learning
  • Track model training with MLflow in jobs
  • Run pipelines in Azure Machine Learning
  • Perform hyperparameter tuning with Azure Machine Learning
  • Deploy a model to a managed online endpoint
  • Deploy a model to a batch endpoint

Preços & Delivery methods

Treinamento online

Duração
4 dias

Preço
  • Solicitar orçamento
Classroom training

Duração
4 dias

Preço
  • Solicitar orçamento

Click on town name or "Online Training" to book Agenda

Instructor-led Online Training:   Este é um curso Instructor-Led Online
This is a FLEX course, which is delivered both virtually and in the classroom.

Europa

Alemanha

Este é um curso FLEX. Stuttgart Inscrever
Treinamento online Fuso horário: Central European Time (CET) Inscrever
Este é um curso FLEX. Munich Inscrever
Treinamento online Fuso horário: Central European Time (CET) Inscrever
Este é um curso FLEX. Frankfurt Inscrever
Treinamento online Fuso horário: Central European Time (CET) Inscrever
Este é um curso FLEX. Hamburgo Inscrever
Treinamento online Fuso horário: Central European Summer Time (CEST) Inscrever
Este é um curso FLEX. Münster Inscrever
Treinamento online Fuso horário: Central European Summer Time (CEST) Inscrever

França

Este é um curso FLEX. Paris Este curso está sendo entregue por um parceiro Inscrever
Treinamento online Fuso horário: Central European Time (CET) Inscrever
Treinamento online Fuso horário: Central European Time (CET) 3 dias Inscrever
Treinamento online Fuso horário: Central European Summer Time (CEST) Inscrever

Polónia

Treinamento online Fuso horário: Central European Summer Time (CEST) Inscrever

Reino Unido

Treinamento online Fuso horário: Greenwich Mean Time (GMT) Inscrever
Treinamento online Fuso horário: Greenwich Mean Time (GMT) Inscrever
Treinamento online Fuso horário: British Summer Time (BST) Inscrever

Suíça

Este é um curso FLEX. Zürich Inscrever
Treinamento online Fuso horário: Central European Time (CET) Inscrever
Este é um curso FLEX. Zürich Inscrever
Treinamento online Fuso horário: Central European Summer Time (CEST) Inscrever