Course Overview
Artificial intelligence (AI) and machine learning (ML) have become an essential part of the toolset for many organizations. When used effectively, these tools provide actionable insights that drive critical decisions and enable organizations to create exciting, new, and innovative products and services. This course shows you how to apply various approaches and algorithms to solve business problems through AI and ML, follow a methodical workflow to develop sound solutions, use open source, off-the-shelf tools to develop, test, and deploy those solutions, and ensure that they protect the privacy of users.
Quem deve participar
The skills covered in this course converge on three areas—software development, applied math and statistics, and business analysis. Target students for this course may be strong in one or two or these of these areas and looking to round out their skills in the other areas so they can apply artificial intelligence (AI) systems, particularly machine learning models, to business problems.
So the target student may be a programmer looking to develop additional skills to apply machine learning algorithms to business problems, or a data analyst who already has strong skills in applying math and statistics to business problems, but is looking to develop technology skills related to machine learning.
A typical student in this course should have several years of experience with computing technology, including some aptitude in computer programming. This course is also designed to assist students in preparing for the CertNexus® Certified Artificial Intelligence (AI) Practitioner (Exam AIP-110) certification.
Pré- requisitos
To ensure your success in this course, you should have at least a high-level understanding of fundamental AI concepts, including, but not limited to: machine learning, supervised learning, unsupervised learning, artificial neural networks, computer vision, and natural language processing. You can obtain this level of knowledge by taking the CertNexus AIBIZ™ (Exam AIZ-110) course.
You should also have experience working with databases and a high-level programming language such as Python, Java, or C/C++.
Objetivos do Curso
In this course, you will implement AI techniques in order to solve business problems. You will:
- Specify a general approach to solve a given business problem that uses applied AI and ML.
- Collect and refine a dataset to prepare it for training and testing.
- Train and tune a machine learning model.
- Finalize a machine learning model and present the results to the appropriate audience.
- Build linear regression models.
- Build classification models.
- Build clustering models.
- Build decision trees and random forests.
- Build support-vector machines (SVMs).
- Build artificial neural networks (ANNs).
- Promote data privacy and ethical practices within AI and ML projects
Conteúdo do curso
Lesson 1: Solving Business Problems Using AI and ML
- Topic A: Identify AI and ML Solutions for Business Problems
- Topic C: Formulate a Machine Learning Problem
- Topic D: Select Appropriate Tools
Lesson 2: Collecting and Refining the Dataset
- Topic A: Collect the Dataset
- Topic B: Analyze the Dataset to Gain Insights
- Topic C: Use Visualizations to Analyze Data
- Topic D: Prepare Data
Lesson 3: Setting Up and Training a Model
- Topic A: Set Up a Machine Learning Model
- Topic B: Train the Model
Lesson 4: Finalizing a Model
- Topic A: Translate Results into Business Actions
- Topic B: Incorporate a Model into a Long-Term Business Solution
Lesson 5: Building Linear Regression Models
- Topic A: Build a Regression Model Using Linear Algebra
- Topic B: Build a Regularized Regression Model Using Linear Algebra
- Topic C: Build an Iterative Linear Regression Model
Lesson 6: Building Classification Models
- Topic A: Train Binary Classification Models
- Topic B: Train Multi-Class Classification Models
- Topic C: Evaluate Classification Models
- Topic D: Tune Classification Models
Lesson 7: Building Clustering Models
- Topic A: Build k-Means Clustering Models
- Topic B: Build Hierarchical Clustering Models
Lesson 8: Building Advanced Models
- Topic A: Build Decision Tree Models
- Topic B: Build Random Forest Models
Lesson 9: Building Support-Vector Machines
- Topic A: Build SVM Models for Classification
- Topic B: Build SVM Models for Regression
Lesson 10: Building Artificial Neural Networks
- Topic A: Build Multi-Layer Perceptrons (MLP)
- Topic B: Build Convolutional Neural Networks (CNN)
Lesson 11: Promoting Data Privacy and Ethical Practices
- Topic A: Protect Data Privacy
- Topic B: Promote Ethical Practices
- Topic C: Establish Data Privacy and Ethics Policies