By browsing this site, you agree to the use of cookies, which enhance your experience, analyze how you integrate with our site and customize our content to your personal needs and search. Saiba mais
0
Español
English
Select country:
Antigua & Barbuda
Argentina
Bahamas
Barbados
Belize
Bolivia
Brazil
Chile
Colombia
Costa Rica
Cuba
Dominica
Dominican Republic
Ecuador
El Salvador
Grenada
Guatemala
Guyana
Honduras
Jamaica
Mexico
Nicaragua
Panama
Paraguay
Peru
Puerto Rico
Saint Kitts & Nevis
Saint Lucia
Saint Vincent & Grenadines
Suriname
Trinidad & Tobago
Uruguay
Venezuela
Albania
Austria
Belgium
Bosnia & Herzegovina
Bulgaria
Croatia
Cyprus
Czech Republic
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Iceland
Ireland
Italy
Latvia
Lithuania
Luxembourg
Malta
Montenegro
Netherlands
North Macedonia
Norway
Poland
Portugal
Romania
Serbia
Slovakia
Slovenia
Spain
Sweden
Switzerland
Turkey
Ukraine
United Kingdom
Canada
United States
Australia
Cambodia
China
Hong Kong
India
Indonesia
Japan
Malaysia
Micronesia
New Zealand
Pakistan
Philippines
Singapore
South Korea
Taiwan
Thailand
Vietnam
Bahrain
Iran
Iraq
Israel
Jordan
Kuwait
Lebanon
Oman
Qatar
Saudi Arabia
Syria
United Arab Emirates
Algeria
Egypt
Kenya
Morocco
Nigeria
Senegal
South Africa
Sudan
Tunisia
Ficaremos felizes em atendê-lo!
Contato
AI+ Data (AIDATA) – Outline
Outline detalhado do curso
Module 1: Foundations of Data Science
1.1 Introduction to Data Science 1.2 Data Science Life Cycle 1.3 Applications of Data Science Module 2: Foundations of Statistics
2.1 Basic Concepts of Statistics 2.2 Probability Theory 2.3 Statistical Inference Module 3: Data Sources and Types
3.1 Types of Data 3.2 Data Sources 3.3 Data Storage Technologies Module 4: Programming Skills for Data Science
4.1 Introduction to Python for Data Science 4.2 Introduction to R for Data Science Module 5: Data Wrangling an Preprocessing
5.1 Data Imputation Techniques 5.2 Handling Outliers and Data Transformation Module 6: Exploratory Data Analysis (EDA)
6.1 Introduction to EDA 6.2 Data Visualization Module 7: Generative AI Tools for Deriving Insights
7.1 Introduction to Generative AI Tools 7.2 Applications of Generative AI Module 8: Machine Learning
8.1 Introduction to Supervised Learning Algorithms 8.2 Introduction to Unsupervised Learning 8.3 Different Algorithms for Clustering 8.4 Association Rule Learning with Implementation Module 9: Advance Machine Learning
9.1 Ensemble Learning Techniques 9.2 Dimensionality Reduction 9.3 Advanced Optimization Techniques Module 10: Data-Driven Decision-Making
10.1 Introduction to Data-Driven Decision Making 10.2 Open Source Tools for Data-Driven Decision Making 10.3 Deriving Data-Driven Insights from Sales Dataset Module 11: Data Storytelling
11.1 Understanding the Power of Data Storytelling 11.2 Identifying Use Cases and Business Relevance 11.3 Crafting Compelling Narratives 11.4 Visualizing Data for Impact Module 12: Capstone Project - Employee Attrition Prediction
12.1 Project Introduction and Problem Statement 12.2 Data Collection and Preparation 12.3 Data Analysis and Modeling 12.4 Data Storytelling and Presentation