Fundamentals of Accelerated Data Science (FADS)

 

Course Overview

Learn how to perform multiple analysis tasks on large datasets using NVIDIA RAPIDS™, a collection of data science libraries that allows end-to-end GPU acceleration for data science workflows.

Certifications

Prerequisites

Experience with Python, ideally including pandas and NumPy.

Suggested resources to satisfy prerequisites: Kaggle's pandas Tutorials, Kaggle's Intro to Machine Learning, Accelerating Data Science Workflows with RAPIDS

Course Objectives

  • Implement GPU-accelerated data preparation and feature extraction using cuDF and Apache Arrow data frames
  • Apply a broad spectrum of GPU-accelerated machine learning tasks using XGBoost and a variety of cuML algorithms
  • Execute GPU-accelerated graph analysis with cuGraph, achieving massive-scale analytics in small amounts of time
  • Rapidly achieve massive-scale graph analytics using cuGraph routines

Follow On Courses

Prices & Delivery methods

Online Training

Duration
1 day

Price
  • on request
Classroom Training

Duration
1 day

Price
  • on request

Schedule

Currently there are no training dates scheduled for this course.