Detailed Course Outline
Module 1: Foundation of Ethical Hacking Using Artificial Intelligence (AI) 1.1 Introduction to Ethical Hacking 1.2 Ethical Hacking Methodology 1.3 Legal and Regulatory Framework 1.4 Hacker Types and Motivations 1.5 Information Gathering Techniques 1.6 Footprinting and Reconnaissance 1.7 Scanning Networks 1.8 Enumeration Techniques Module 2: Introduction to AI in Ethical Hacking 2.1 AI in Ethical Hacking 2.2 Fundamentals of AI 2.3 AI Technologies Overview 2.4 Machine Learning in Cybersecurity 2.5 Natural Language Processing (NLP) for Cybersecurity 2.6 Deep Learning for Threat Detection 2.7 Adversarial Machine Learning in Cybersecurity 2.8 AI-Driven Threat Intelligence Platforms 2.9 Cybersecurity Automation with AI Module 3: AI Tools and Technologies in Ethical Hacking 3.1 AI-Based Threat Detection Tools 3.2 Machine Learning Frameworks for Ethical Hacking 3.3 AI-Enhanced Penetration Testing Tools 3.4 Behavioral Analysis Tools for Anomaly Detection 3.5 AI-Driven Network Security Solutions 3.6 Automated Vulnerability Scanners 3.7 AI in Web Application 3.8 AI for Malware Detection and Analysis 3.9 Cognitive Security Tools Module 4: AI-Driven Reconnaissance Techniques 4.1 Introduction to Reconnaissance in Ethical Hacking 4.2 Traditional vs. AI-Driven Reconnaissance 4.3 Automated OS Fingerprinting with AI 4.4 AI-Enhanced Port Scanning Techniques 4.5 Machine Learning for Network Mapping 4.6 AI-Driven Social Engineering Reconnaissance 4.7 Machine Learning in OSINT 4.8 AI-Enhanced DNS Enumeration & AI-Driven Target Profiling Module 5: AI in Vulnerability Assessment and Penetration Testing 5.1 Automated Vulnerability Scanning with AI 5.2 AI-Enhanced Penetration Testing Tools 5.3 Machine Learning for Exploitation Techniques 5.4 Dynamic Application Security Testing (DAST) with AI 5.5 AI-Driven Fuzz Testing 5.6 Adversarial Machine Learning in Penetration Testing 5.7 Automated Report Generation using AI 5.8 AI-Based Threat Modeling 5.9 Challenges and Ethical Considerations in AI-Driven Penetration Testing Module 6: Machine Learning for Threat Analysis 6.1 Supervised Learning for Threat Detection 6.2 Unsupervised Learning for Anomaly Detection 6.3 Reinforcement Learning for Adaptive Security Measures 6.4 Natural Language Processing (NLP) for Threat Intelligence 6.5 Behavioral Analysis using Machine Learning 6.6 Ensemble Learning for Improved Threat Prediction 6.7 Feature Engineering in Threat Analysis 6.8 Machine Learning in Endpoint Security 6.9 Explainable AI in Threat Analysis Module 7: Behavioral Analysis and Anomaly Detection for System Hacking 7.1 Behavioral Biometrics for User Authentication 7.2 Machine Learning Models for User Behavior Analysis 7.3 Network Traffic Behavioral Analysis 7.4 Endpoint Behavioral Monitoring 7.5 Time Series Analysis for Anomaly Detection 7.6 Heuristic Approaches to Anomaly Detection 7.7 AI-Driven Threat Hunting 7.8 User and Entity Behavior Analytics (UEBA) 7.9 Challenges and Considerations in Behavioral Analysis Module 8: AI Enabled Incident Response Systems 8.1 Automated Threat Triage using AI 8.2 Machine Learning for Threat Classification 8.3 Real-time Threat Intelligence Integration 8.4 Predictive Analytics in Incident Response 8.5 AI-Driven Incident Forensics 8.6 Automated Containment and Eradication Strategies 8.7 Behavioral Analysis in Incident Response 8.8 Continuous Improvement through Machine Learning Feedback 8.9 Human-AI Collaboration in Incident Handling Module 9: AI for Identity and Access management (IAM) 9.1 AI-Driven User Authentication Techniques 9.2 Behavioral Biometrics for Access Control 9.3 AI-Based Anomaly Detection in IAM 9.4 Dynamic Access Policies with Machine Learning 9.5 AI-Enhanced Privileged Access Management (PAM) 9.6 Continuous Authentication using Machine Learning 9.7 Automated User Provisioning and De-provisioning 9.8 Risk-Based Authentication with AI 9.9 AI in Identity Governance and Administration (IGA) Module 10: Securing AI Systems 10.1 Adversarial Attacks on AI Models 10.2 Secure Model Training Practices 10.3 Data Privacy in AI Systems 10.4 Secure Deployment of AI Applications 10.5 AI Model Explainability and Interpretability 10.6 Robustness and Resilience in AI 10.7 Secure Transfer and Sharing of AI Models 10.8 Continuous Monitoring and Threat Detection for AI Module 11: Ethics in AI and Cybersecurity 11.1 Ethical Decision-Making in Cybersecurity 11.2 Bias and Fairness in AI Algorithms 11.3 Transparency and Explainability in AI Systems 11.4 Privacy Concerns in AI-Driven Cybersecurity 11.5 Accountability and Responsibility in AI Security 11.6 Ethics of Threat Intelligence Sharing 11.7 Human Rights and AI in Cybersecurity 11.8 Regulatory Compliance and Ethical Standards 11.9 Ethical Hacking and Responsible Disclosure Module 12: Capstone Project 12.1 Case Study 1: AI-Enhanced Threat Detection and Response 12.2 Case Study 2: Ethical Hacking with AI Integration 12.3 Case Study 3: AI in Identity and Access Management (IAM) 12.4 Case Study 4: Secure Deployment of AI Systems